Start » Filter Reference » Data Classification » Clustering » ClusterData_KMeans
Module: | FoundationPro |
---|
Clusters data using KMeans algorithm.
Name | Type | Range | Description | |
---|---|---|---|---|
inData | RealArrayArray | Data set, array of examples | ||
inClusters | Integer | 2 - + | Number of clusters to extract | |
inMaxIterations | Integer | 10 - 1000 | Maximal number of procedure iterations | |
inSeed | Integer | 0 - | Seed to init random engine | |
inTerminationFactor | Real | 1.0 - 2.0 | Additional factor of procedure stop | |
inClusteringMethod | KMeansClusteringMethod | KMeans variant to use | ||
outCentroids | Matrix | Resulting centroid points in feature space | ||
outPointToClusterAssignment | IntegerArray | Array of input point assignments to generated clusters | ||
outDistanceSum | Real | Sum of squared distances from points to its respective cluster centroids |
Errors
This filter can throw an exception to report error. Read how to deal with errors in Error Handling.
List of possible exceptions:
Error type | Description |
---|---|
DomainError | Cannot make more clusters than there is data in input dataset in ClusterData_KMeans. |
DomainError | Empty dataset on input in ClusterData_KMeans. |
DomainError | Inconsistent number of data coordinates in input dataset in ClusterData_KMeans. |
Complexity Level
This filter is available on Expert Complexity Level.