Start » Filter Reference » Data Classification » Clustering » ClusterPoints2D

ClusterPoints2D


Module: FoundationPro

Clusters 2D points using K Means Clustering method.

Name Type Range Description
Input value
inPoints Point2DArray Array of points to cluster
Input value
inClusters Integer 2 - + Number of clusters to extract
Input value
inMaxIterations Integer 10 - 1000 Maximal number of KMeans iterations
Input value
inSeed Integer* 0 - + Seed used to initialize random number generators
Input value
inRunCount Integer 1 - + Defines how many times the algorithm will be executed
Output value
outClusters Point2DArray?Array Resulting Point2D clusters
Output value
outCentroids Point2D?Array Center of found clusters
Output value
outDistanceSum Real Sum of distance squares from points in array to its respective cluster center

Complexity Level

This filter is available on Expert Complexity Level.