Start » Filter Reference » Data Classification » Multilayer Perceptron » MLP_Init
Module: | FoundationPro |
---|
Creates multilayer perceptron model.
Name | Type | Range | Description | |
---|---|---|---|---|
![]() |
inHiddenLayers | IntegerArray* | Internal structure of MLP network | |
![]() |
inActivationFunction | ActivationFunction | Type of activation function used to calculate neural response | |
![]() |
inPreprocessing | MlpPreprocessing | Method of processing input data before learning | |
![]() |
inRandomSeed | Integer* | 0 - ![]() |
Number used as starting random seed |
![]() |
inInputCount | Integer | 1 - ![]() |
MLP network input count |
![]() |
inOutputCount | Integer | 1 - ![]() |
MLP network output count |
![]() |
outMlpModel | MlpModel | Initialized MlpModel |
Description
Filter initializes and sets structure of the MlpModel.

Image: Internal structure of MlpModel. Function f denotes the inActivationFunction.
Parameter inHiddenLayers represents number of neurons in consecutive hidden layers.
The parameter inActivationFunction is a function used to calculate internal neuron activation.
The weights of the multilayer perceptron are initialized by a random numbers. Their values depend on inRandomSeed value.
Parameters inInputCount and inOutputCount defines network inputs and outputs count.
Complexity Level
This filter is available on Expert Complexity Level.
See Also
- MLP_Train – Creates and trains multilayer perceptron classifier.
- MLP_Respond – Calculates multilayer perceptron answer.